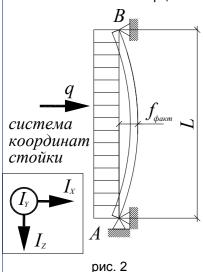
Профиль для вертикальной стойки (или опорной балки) для ограждающих конструкций подбирается из расчета необходимого момента инерции I_x , удовлетворяющему условию прогиба

$$f_{\phi a \kappa m} < f_{\partial on},$$

 $f_{\phi a \kappa m}^{}$ - фактический прогиб для средней однопролетной балки со свободными опорами, $f_{\partial on}^{}$ - допускаемый прогиб для ограждающих конструкций согласно табл.42 СП 20.13330.2011 "Нагрузки и возлействия"


 $f_{\it don}$ =L/100 - допускаемый прогиб средней однопролетной балки для поликарбоната ,

 $f_{\partial on} = L/200$ - допускаемый прогиб средней однопролетной балки для стекла , или

 $f_{don} = L/300$ - допускаемый прогиб средней однопролетной балки для стеклопакета.

И при соблюдении ограничения для прогиба стекла (см.рис.3), $f_1 < 8$ мм

Момент инерции Ix для однопролетной балки определяем по формуле:

$$Ix > \frac{5 \cdot q_{pacq} \cdot L^4}{384 \cdot E \cdot f_{\phi a \kappa m}} \cdot k_1 \cdot k_2$$

где

 $q_{\it pacu} = q \cdot \gamma_{\it f}$ - расчетная нагрузка, $q = W_{\it n} \cdot D$ - интенсивность распределенной ветровой нагрузки

 $W_n = W_m + W_p$

 $W_m = W_0 \cdot k \cdot c^T$ - нормативное значение средней составляющей ветровой нагрузки, γ_f - коэффициент надежности по ветровой нагрузке следует принимать равным I,4 (СП 20.13330.2011 "Нагрузки и воздействия"),

 $W_p = W_0 \cdot \xi \cdot v$ - нормативное значение пульсационной составляющей ветровой нагрузки,

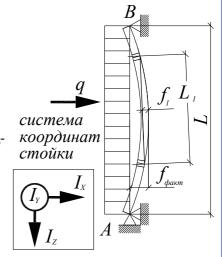


рис. 3

 $E = 710000~H/{\it M}^2$ - модуль Юнга для алюминия,

 $(E=2100000 \ H/{\rm M}^2$ - модуль Юнга для стали)

 ${\it W}_{\it 0}\,$ - нормативное значение ветрового давления (см. табл. 3),

L - высота стойки,

B - шаг стоек (ширина большего проема),

k - коэффициент, учитывающий изменение ветрового давления по высоте (см. табл.4),

c = 0.8 - аэродинамический коэффициент для фронтальной части здания, или

c=2,0 - аэродинамический коэффициент для угловой части здания,

Ветровые нагрузки (принимаются по карте 3 обязательного приложения к СП 20.13330.2011 "Нагрузки и воздействия") поперечный размер L_{yz} угловой области удовлетворяет условию

$$1.0 \text{ M} \le L_{v_2}/8 \le 2.0 \text{ M}$$

При расчете нагрузок на стойку в проеме с открывающимся элементом - дверью, также рекомендуется принять c=2

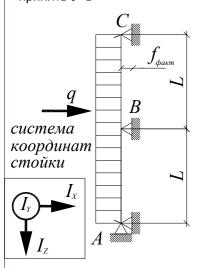


рис. 4

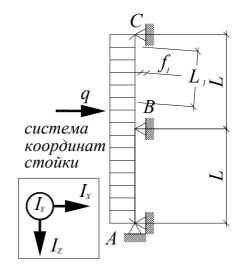


рис. 5

Система **FC50+**

- $k_{I}\,$ коэффициент, учитывающий размеры области остекления (см. рис.3 и рис.5, табл.1)
- k_2 коэффициент, учитывающий прогиб по кромке стекла остекления (см. табл.2)
- ζ коэффициент пульсаций давления ветра для типов местности (табл.5)

Таблица 1

Высота стеклопакета $L_{\it l}$, см	250	260	270	280	290	300	325	350	375	400
Коэффициент k_I	1.0	1.1	1.1	1.2	1.2	1.3	1.4	1.5	1.6	1.7

Таблица 2

L, см	Коэффициент k_2 для различных значений L_I / L						
L, CM	1.0	0.75	0.7	0.5			
250	1.0	1.0	1.0	1.0			
300	1.2	1.0	1.0	1.0			
350	1.5	1.0	1.0	1.0			
400	1.7	1.0	1.0	1.0			
450	1.9	1.1	1.0	1.0			
500	2.1	1.2	1.0	1.0			
550	2.3	1.3	1.0	1.0			
600	2.5	1.4	1.1	1.0			

Таблица 3 (СП 20.13330.2011 "Нагрузки и воздействия" п.6.2. табл. 5)

Ветровой район	la	I	II	Ш	IV	٧	VI	VII
W_{0} , кПа	0.17	0.23	0.30	0.38	0.48	0.60	0.73	0.85
W_0 , кгс/м2	17	23	30	38	48	60	73	85

Таблица 4 (СП 20.13330.2011 "Нагрузки и воздействия", п.6.2., табл. 6)

Высота, м	Коэффициент k для типов местности						
	А	В	С				
≤5	0.8	0.5	0.4				
10	1.0	0.7	0.4				
20	1.3	0.9	0.6				
40	1.5	1.1	0.8				
60	1.7	1.3	1.0				
80	1.9	1.5	1.2				
100	2.0	1.6	1.3				
150	2.3	1.9	1.6				
200	2.5	2.1	1.8				
250	2.7	2.3	2.0				
300	2.8	2.5	2.2				
350	2.8	2.8	2.4				

Примечание. При определении ветровой нагрузки типы местности могут быть различными для разных расчетных направлений ветра.